
Ladder operators for the associated Laguerre functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 7499

(http://iopscience.iop.org/0305-4470/37/30/008)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/30
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 7499–7507 PII: S0305-4470(04)76252-6

Ladder operators for the associated Laguerre
functions

H Fakhri1,2 and A Chenaghlou1,3

1 Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531,
Tehran, Iran
2 Department of Theoretical Physics and Astrophysics, Physics Faculty, Tabriz University,
PO Box 51664, Tabriz, Iran
3 Physics Department, Faculty of Science, Sahand University of Technology,
PO Box 51335-1996, Tabriz, Iran

E-mail: hfakhri@ipm.ir and a.chenaghlou@sut.ac.ir

Received 12 February 2004, in final form 13 May 2004
Published 14 July 2004
Online at stacks.iop.org/JPhysA/37/7499
doi:10.1088/0305-4470/37/30/008

Abstract
Introducing the associated Laguerre functions in terms of two non-negative
integers, we obtain simultaneously and separately realization of the laddering
equations with respect to each of the integers by means of two pairs of ladder
operators. Besides, two different types of shape-invariance symmetries are
realized. This approach leads to a derivation of shape-invariance equations
of third type which are realized by two simultaneous raising and lowering
operators of two parameters.

PACS numbers: 02.30.Hq, 02.30.Gp, 12.39.St

1. Introduction

The associated Laguerre functions that are special cases of confluent hypergeometric functions
play an important role in some physical problems including, for example, wavefunctions
of hydrogen-like atoms and their bound energies [1]. Moreover, well-known problems
of quantum mechanics such as the wave equations of Morse [2] and three-dimensional
harmonic oscillator [3] potentials can be converted to the Laguerre differential equation.
For instance in [4], Morse and three-dimensional harmonic oscillator solvable models have
been derived by using shape-invariance symmetries with respect to n (polynomial degree) and
m (dependence parameter) of the associated Laguerre functions, respectively. So, different
types of factorizations of the associated Laguerre differential equation into products of ladder
operators in the framework of shape-invariance symmetries have attracted much attention in
physics problems. Meanwhile by introducing ladder operators corresponding to the degree

0305-4470/04/307499+09$30.00 © 2004 IOP Publishing Ltd Printed in the UK 7499

http://stacks.iop.org/ja/37/7499


7500 H Fakhri and A Chenaghlou

index of Laguerre polynomials, different coherent states have been obtained for the Morse
potential in addition to the supersymmetric structure [5]. From a mathematical point of view,
the Laguerre polynomials are studied in connection with generating functions [6], closed-
form sums [7] and arbitrary fractional orders [8]. In [9], by using the recursion relations
with respect to the polynomial degree, a pair of ladder operators has been deduced for some
orthogonal polynomials such as Laguerre’s. Cotfas [10] showed the existence of ladder
operators for the hypergeometric-type functions so that they realize simultaneously shape-
invariance symmetries with respect to two different parameters. We followed Cotfas’ idea for
the associated hypergeometric functions [11]. In this manuscript we study simultaneous shape-
invariance symmetry with respect to more than one parameter for the associated Laguerre
functions. It is shown that the obtained results are somewhat different from the associated
hypergeometric functions case. The results of this manuscript may be used for investigating
the superalgebras of the Morse and three-dimensional harmonic oscillator potentials [12], as
well as quantum splitting and the coherent states of the Landau problem [13, 14] (motion of
a charged and spinless particle on a flat surface in the presence of a uniform magnetic field
along the z-axis). Meanwhile, the ladder operators corresponding to the simultaneous shift
of two indices of the associated Laguerre functions can be applied to the investigation of
supersymmetric structures for the radial bound states of hydrogen-like atoms, and also some
other problems.

In this manuscript by introducing the associated Laguerre functions (confluent
hypergeometric functions as finite series) in terms of two parameters n and m which describe
the polynomial degree and dependence index, respectively, we realize a square integrability
condition and their orthogonality with the same m but different n, with respect to an inner
product with the weight function xα e−βx in the interval x ∈ (0,∞). Then by applying
this integrability condition, we factorize the associated Laguerre differential equation into
a product of first-order differential operators in three different ways as shape-invariance
equations. These shape-invariance relations are realized by ladder operators shifting only n,
shifting only m and shifting indices n and m simultaneously and agreeably. In contrast to
the associated hypergeometric functions, it is shown that the fourth type of shape invariance
for the Laguerre’s ones, which is expected to shift the indices n and m simultaneously and
inversely by the first-order differential ladder operators, does not exist.

2. Shape-invariance equations with respect to n and m

Let us firstly consider a linear second-order differential operator with given real parameters
α > −1 and β > 0 as

L(α,β)(x) := x−α eβx d

dx

(
xα+1 e−βx d

dx

)
. (1)

Lemma 1. The operator L(α,β)(x) has the following properties:

(a) It is a self-adjoint operator with respect to an inner product with the weight function
xα e−βx in the interval x ∈ (0,∞).

(b) The action of the operator L(α,β)(x) on any polynomial of arbitrary degree is such that
the degree of the polynomial is not increased.

(c) If we show the eigenfunctions of the operator L(α,β)(x) with L
(α,β)
n (x) as a polynomial

exactly of degree n, then we can conclude its eigenvalue equation as follows:

xL′′(α,β)
n (x) + (1 + α − βx) L′(α,β)

n (x) + nβL(α,β)
n (x) = 0 n = 0, 1, 2, . . . . (2)
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Proof. The proof is straightforward. �

Equation (2) is the differential equation corresponding to the Laguerre orthogonal polynomials
of arbitrary degree n [15].

Lemma 2. The orthogonal Laguerre polynomials as particular solutions of the differential
equation (2) have as a representation the so-called Rodrigues formula:

L(α,β)
n (x) = an(α, β)

xα e−βx

(
d

dx

)n

(xα+n e−βx) (3)

where an(α, β) are the normalization coefficients.

Proof. A complete proof can be seen in [15]. �

It is easily seen that the coefficient of the highest power of x, xn, for L
(α,β)
n (x) is

L(α,β)
n (x) = an(α, β) (−β)n xn + O(xn−1). (4)

Therefore, considering the confluent hypergeometric function as a finite series

1F1(−n;α + 1;βx) = �n
k=0

(−n)k

(α + 1)k

(βx)k

k!
(5)

in which (a)k denotes the shifted factorial (or Pochhammer symbol): (a)k = a(a + 1) · · · (a +
k − 1) with k > 0, and (a)0 = 1, the Laguerre polynomials L

(α,β)
n (x) can be expressed as

follows:

L(α,β)
n (x) = an(α, β)

�(α + n + 1)

�(α + 1)
1F1(−n;α + 1;βx). (6)

Lemma 3. The inner product of the orthogonal Laguerre polynomials with respect to the
weight function xα e−βx in the interval x ∈ (0,∞) is computed as follows:∫ ∞

0
L(α,β)

n (x)L
(α,β)

n′ (x)xα e−βx dx = δnn′h2
n(α, β) n, n′ ∈ {0, 1, 2, . . .} (7)

where

h2
n(α, β) = �(n + 1)�(α + n + 1)

βα+1
a2

n(α, β). (8)

Proof. This follows immediately from integration by parts. �

Lemma 4. We have the following associated Laguerre functions differential equation,

xL′′(α,β)
n,m (x) + (1 + α − βx)L′(α,β)

n,m (x) +

[(
n − m

2

)
β − m

2

(
α +

m

2

) 1

x

]
L(α,β)

n,m (x) = 0

0 � m � n < +∞ (9)

with the solutions as

L(α,β)
n,m (x) = an,m(α, β)

xα+ m
2 e−βx

(
d

dx

)n−m

(xα+n e−βx) (10)

where an,m(α, β) are the normalization coefficients.

Proof. By differentiating the differential equation (2) m times we obtain a new differential
equation similar to (2), but with new parameters α + m and n − m instead of α and n,
respectively. Thus for the obtained differential equation, we have a polynomial solution of
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degree n − m as L
(α+m,β)
n−m (x). Finally, it is easily seen that the associated Laguerre functions

L(α,β)
n,m (x) = an,m(α, β)

an−m(α + m,β)
x

m
2 L

(α+m,β)
n−m (x) (11)

satisfy the differential equation (9). �

It is evident that by choosing m = 0, the associated Laguerre differential equation (9) is
reduced to the differential equation (2) for the Laguerre polynomials. Note that the associated
Laguerre function L

(α,β)
n,m (x) will be a polynomial in terms of integer or half-integer powers

of x if m is chosen as an even or odd integer, respectively. Clearly for an odd m, the
associated Laguerre function L

α,β
n,m(x) is a polynomial in terms of powers of x apart from the

coefficient
√

x.

Lemma 5. We have∫ ∞

0
L(α,β)

n,m (x)L
(α,β)

n′,m (x)xα e−βx dx = δnn′h2
n,m(α, β) 0 � m � min{n, n′} (12)

where

h2
n,m(α, β) = �(n − m + 1)�(α + n + 1)

βα+m+1
a2

n,m(α, β). (13)

Proof. The proof follows by using lemma 3 and the formula (11). �

We shall determine the normalization coefficients by realizing the laddering equations. Before
investigating the laddering equations, we obtain the shape-invariance symmetry equations with
respect to two parameters n and m.

Proposition 1. The associated Laguerre functions differential equation (9) is factorized into
a product of first-order differential operators as

(a) shape-invariance symmetry equations (of first type) with respect to n, i.e. as equations
(n,m) and (n − 1,m)

A+(n,m; x)A−(n,m; x)L(α,β)
n,m (x) = E(n,m)L(α,β)

n,m (x)

A−(n,m; x)A+(n,m; x)L
(α,β)

n−1,m(x) = E(n,m)L
(α,β)

n−1,m(x)
(14)

with

A+(n,m; x) = x
d

dx
− βx +

1

2
(2α + 2n − m)

A−(n,m; x) = −x
d

dx
+

1

2
(2n − m)

(15)

E(n,m) = (n − m)(n + α). (16)

(b) shape-invariance symmetry equations (of second type) with respect to m, i.e. as equations
(n,m) and (n,m − 1)

A+(m; x)A−(m; x)L(α,β)
n,m (x) = E(n,m)L(α,β)

n,m (x)

A−(m; x)A+(m; x)L
(α,β)

n,m−1(x) = E(n,m)L
(α,β)

n,m−1(x)
(17)

with

A+(m; x) = √
x

d

dx
− m − 1

2
√

x

A−(m; x) = −√
x

d

dx
− 2α + m − 2βx

2
√

x

(18)

E(n,m) = (n − m + 1)β. (19)
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Proof. The proof can be made by means of a direct substitution of the explicit forms of
A±(n,m; x), E(n,m), A±(m; x) and E(n,m) in equations (14) and (17), and converting them
to the differential equation (9). �

Note that the operators A+(m; x) and A−(m; x) (A+(n,m; x) and A−(n,m; x)) are (not)
adjoint to each other with respect to an inner product with the weight function xα e−βx in the
interval x ∈ (0,∞).

3. Simultaneous realization of laddering equations with respect to n and m

Now by using the shape-invariance symmetry equations (14) and (17), we can obtain the raising
and lowering relations of the indices n and m of the associated Laguerre functions L

(α,β)
n,m (x).

Clearly, the realization of the shape-invariance symmetry equations (14) and (17) does not
impose any constraint on the normalization coefficients an,m(α, β). However, the realization
of the laddering equations with respect to n and m imposes separately recursion relations on
the normalization coefficients with respect to n and m, respectively. These recursion relations
determine the fact that now function an,m(α, β) is from n and m.

Proposition 2. For a given m, the raising and lowering relations of the index n,

A+(n,m; x)L
(α,β)

n−1,m(x) =
√

E(n,m)L(α,β)
n,m (x) (20a)

A−(n,m; x)L(α,β)
n,m (x) =

√
E(n,m)L

(α,β)

n−1,m(x) (20b)

and for a given n, the raising and lowering relations of the index m,

A+(m; x)L
(α,β)

n,m−1(x) =
√
E(n,m)L(α,β)

n,m (x) (21a)

A−(m; x)L(α,β)
n,m (x) =

√
E(n,m)L

(α,β)

n,m−1(x) (21b)

are simultaneously established if the normalization coefficient an,m(α, β) is chosen as

an,m(α, β) = (−1)m

√
βm

�(n − m + 1)�(α + n + 1)
C(α, β) 0 � m � n < +∞ (22)

where C(α, β) is an arbitrary real constant independent of n and m. Therefore, A±(n,m; x)

and A±(m; x) are the ladder operators on the indices n and m of the associated Laguerre
functions L

(α,β)
n,m (x), respectively.

Proof. Using equation (10) in (20a) and applying equation (4) as well, one may compare
the coefficients of the highest power of x, xn− m

2 on both sides, then the following recursion
relation with respect to the index n is obtained:

an,m(α, β) = an−1,m(α, β)√
(n − m)(α + n)

0 � m < n < +∞. (23)

If we follow a similar procedure in connection with equation (20b), then we will find that the
coefficient of the highest power of x, that is xn− m

2 , is identically zero on both sides. Repeated
application of the recursion relation (23) results in

an,m(α, β) =
√

�(α + m + 1)

�(n − m + 1)�(α + n + 1)
am,m(α, β) 0 � m � n < +∞. (24)
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Moreover, using equation (10) in each of equations (21a) and (21b) then applying (4), one may
obtain the following recursion relation on the index m by means of comparing the coefficients
of the highest power of x, xn− m

2 and xn− m
2 + 1

2 respectively, on both sides of them:

an,m(α, β) = an,m+1(α, β)

−√
(n − m)β

0 � m < n < +∞. (25)

The recursion relation (25) immediately gives

an,m(α, β) = an,n(α, β)

(−1)n−mβ
n−m

2
√

�(n − m + 1)
0 � m � n < +∞. (26)

Comparing the results (24) and (26), it appears that

an,n(α, β) = (−1)nβ
n
2√

�(α + n + 1)
C(α, β) C(α, β) =

√
�(α + 1)a0,0(α, β) (27)

where n = 0, 1, 2, . . . . Certainly, a relation similar to (27) is satisfied when n = m. Therefore
by using each of equations (24) and (26), the relation (22) for the normalization coefficients
is obtained. Although in deriving the relation (22) we have not used (20b) however, one may
consider the realization of the relation (20b) by means of using (22). This completes the
proof. �

It is important to note that in (22) we have essentially derived the normalization coefficients in
terms of n and m in such a way that the associated Laguerre functions satisfy simultaneously the
laddering relations with respect to both indices n and m. Clearly, the laddering relations (20)
for a given m, and (21) for a given n are infinite and finite respectively, since m � n < +∞.
The norm of the associated Laguerre functions is determined by fixing the normalization
coefficients as (22).

Corollary 1. The norm of the associated Laguerre functions L
(α,β)
n,m (x) is independent of n and

m, and is given by

h2
n,m(α, β) = C2(α, β)

βα+1
. (28)

Proof. It follows immediately by substituting (22) in (13). �

It must be mentioned that the norm of the Laguerre functions as (28) that has been determined
due to simultaneous realization of laddering equations with respect to n and m is neither a
function of n nor, in contrast to the norm of the associated hypergeometric functions [11], m.
In other words, all of the associated Laguerre functions L

(α,β)
n,m (x) for all n and m have the same

norm.

Corollary 2. There are the following two algebraic solutions for the associated Laguerre
functions differential equation:

L(α,β)
n,m (x) =

√
�(α + m + 1)

�(n − m + 1)�(α + n + 1)
A+(n,m; x)A+(n − 1,m; x) · · ·

A+(m + 1,m; x)L(α,β)
m,m (x) n � m + 1 (29)

L(α,β)
n,m (x) = A−(m + 1; x)A−(m + 2; x) · · · A−(n; x)L

(α,β)
n,n (x)√

βn−m�(n − m + 1)
m � n − 1 (30)

where

L(α,β)
m,m (x) = am,m(α, β)x

m
2 . (31)
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Proof. Considering E(m,m) = E(n, n + 1) = 0, the first-order differential equations
A−(m,m; x)L

(α,β)
m,m (x) = 0 and A+(n + 1; x)L

(α,β)
n,n (x) = 0 are obtained from equations (20b)

and (21a), respectively. The solution of the first differential equation is (31) which is also the
solution of the second differential equation if m is replaced by n. For given m and n, using the
laddering relations (20a) and (21b) one may obtain the algebraic solutions (29) and (30) for
the associated Laguerre functions, respectively. �

Note that the algebraic solution (31) is consistent with the analytic solution (10).

4. Shape-invariance and laddering equations with respect to n and m simultaneously

The laddering equations (20) and (21), which shift n and m respectively, lead to the derivation
of a new type of factorization for the differential equation (9) as the shape-invariance symmetry
equations with the indices (n,m) and (n − 1,m − 1). This factorization is realized by a pair
of the ladder operators whose corresponding laddering equations shift both of the indices n
and m simultaneously and agreeably.

Proposition 3. Let us define two new ladder operators as

A+,+(m; x) := A+(m; x)A+(n,m − 1; x) − A+(n,m; x)A+(m; x)

A−,−(m; x) := A−(n,m − 1; x)A−(m; x) − A−(m; x)A−(n,m; x).
(32)

(a) They satisfy the raising and lowering relations with respect to n and m, simultaneously as

A+,+(m; x)L
(α,β)

n−1,m−1(x) =
√

(α + n)βL(α,β)
n,m (x) (33a)

A−,−(m; x)L(α,β)
n,m (x) =

√
(α + n)βL

(α,β)

n−1,m−1(x). (33b)

So, the operator A+,+(n,m; x) increases both of the indices n and m but the operator
A−,−(n,m; x) decreases both of them.

(b) They satisfy shape-invariance symmetry equations (of the third type) with respect to the
indices n and m as equations (n,m) and (n − 1,m − 1):

A+,+(m; x)A−,−(m; x)L(α,β)
n,m (x) = (α + n)βL(α,β)

n,m (x)

A−,−(m; x)A+,+(m; x)L
(α,β)

n−1,m−1(x) = (α + n)βL
(α,β)

n−1,m−1(x).
(34)

(c) They are first-order differential operators with the following explicit forms:

A+,+(m; x) = √
x

d

dx
− m − 1 + 2βx

2
√

x
= A+(m; x) − β

√
x

A−,−(m; x) = −√
x

d

dx
− 2α + m

2
√

x
= A−(m; x) − β

√
x.

(35)

Proof. The laddering relations (33) are proved by applying the laddering relations (20) and
(21) in the definitions (32). The shape-invariance symmetry equations (34) are established by
the laddering relations (33). The explicit forms of the differential operators A±,±(m; x) are
obtained by the explicit forms of the differential operators A±(n,m; x) and A±(m; x) which
are given by equations (15) and (18), respectively. �

It is noted that simultaneous raising and lowering operators of both indices n and m of the
associated Laguerre functions are only functions of m. However, the operators corresponding
to the associated hypergeometric functions are functions of n and m in general. Note that
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n
A -, -(
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+
(1
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)
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Figure 1. The plane of displacements of the associated Laguerre functions in three different ways
by the ladder operators shifting only n, shifting only m, shifting indices n and m simultaneously
and agreeably.

(This figure is in colour only in the electronic version)

each of equations (14), (17) and (34) is converted to the differential equation (9) after some
manipulation. In fact, they are different types of factorizations of (9) as the shape-invariance
symmetry equations. Meanwhile by using each of the laddering relations (20), (21) and (33),
one may obtain a pair of recursion relations on three associated Laguerre functions with respect
to n and m. In figure 1, we have shown all the associated Laguerre functions L

(α,β)
n,m (x) as points

(n,m) with the restriction 0 � m < n < ∞ in the flat plane with n and m as the horizontal
and vertical axes, respectively. The ladder operators A+(n,m; x) and A−(n,m; x),A+(m, x)

and A−(m; x),A+,+(m, x) and A−,−(m; x) displace the associated Laguerre functions laid on
the lines of horizontal, vertical, parallel with the bisector of the first quadrant to the right and
left sides, up and down, right upper corner and left lower corner, respectively.

Remark. Using the explicit forms of the differential operators given in equations (15), (18)
and (35), it is easily shown that the following relations are established:

A+,−(m; x) := A+(n,m − 1; x)A−(m; x) − A−(m; x)A+(n,m; x) = 0

A−,+(m; x) := A+(m; x)A−(n,m − 1; x) − A−(n,m; x)A+(m; x) = 0
(36)

A+,2+(m; x) := A+(m; x)A+,+(m − 1; x) − A+,+(m; x)A+(m − 1; x) = 0

A−,2−(m; x) := A−(m − 1; x)A−,−(m; x) − A−,−(m − 1; x)A−(m; x) = 0
(37)

A2+,+(m; x) := A+(n,m; x)A+,+(m; x) − A+,+(m; x)A+(n − 1,m − 1; x) = 0

A2−,−(m; x) := A−(n − 1,m − 1; x)A−,−(m; x) − A−,−(m; x)A−(n,m; x) = 0.
(38)

These relations can also be obtained by using the laddering relations (20), (21) and (33) via
the action of the operators on the space of associated Laguerre functions. The relations (36)
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show that, in contrast to the associated hypergeometric functions case [11], it is not possible
to obtain first-order differential operators so that they increase one of the indices and decrease
the other one simultaneously. Furthermore, the relations (37) and (38) indicate that first-order
ladder differential operators which increase (decrease) one of the indices by one unit and the
other one by two units, do not exist. In fact, the relations (37) and (38) give rise to realization
of commutation relations corresponding to two generator bunches of Lie algebra h4 as the
relations (13) in [14]. The mentioned fact provides realization of Lie algebras su(2) and
su(1, 1) by two generator bunches which have been introduced there.
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